organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-Hydroxy-4,8-dimethyl-12-(pyrrolidin-1-ylmethyl)-3,14-dioxatricyclo-[9.3.0.0^{2,4}]tetradec-7-en-13-one

Mohamed Moumou,^a* Ahmed Benharref,^a Daniel Avignant,^b Abdelghani Oudahmane,^b Mohamed Akssira^c and Moha Berraho^a

^aLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, ^bLaboratoire des Matériaux Inorganiques, Université Blaise Pascal, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France, and ^cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco Correspondence e-mail: mberraho@yahoo.fr

Received 24 July 2011; accepted 28 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.121; data-to-parameter ratio = 9.5.

The title compound, $C_{19}H_{29}O_4$, was synthesized from 9α hydroxyparthenolide (9 α -hydroxy-4,8-dimethyl-12-methylen-3,14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one), which was isolated from the chloroform extract of the aerial parts of Anvillea radiata. The molecule is built up from two fused fiveand ten-membered rings with the pyrrolidin-1-ylmethyl group as a substituent. The five-membered lactone ring has an envelope conformation, whereas the ten-membered and pyrrolidine rings display approximate chair-chair and twisted conformations, respectively. The dihedral angle between the ten-membered ring and the lactone ring is 18.01 (19)°. An intramolecular O-H···N hydrogen bond occurs. The crystal structure is stabilized by weak intermolecular C-H···O hydrogen-bonding interactions.

Related literature

For the isolation and biological activity of 9α -hydroxyparthenolide, see: Abdel Sattar et al. (1996); El Hassany et al. (2004). For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1993); Neukirch et al. (2003); Der-Ren et al. (2006); Neelakantan et al. (2009). For conformational analysis, see: Cremer & Pople (1975)

V = 1803.3 (2) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.27 \times 0.18 \; \text{mm}$

7656 measured reflections

2110 independent reflections

1220 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.053$

Z = 4

Experimental

Crystal data

C19H29NO4 $M_r = 335.43$ Orthorhombic, $P2_12_12_1$ a = 8.1389 (6) Å b = 10.1788 (7) Å c = 21.7669 (15) Å

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\rm min} = 0.634, \ T_{\rm max} = 0.746$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	222 parameters
$wR(F^2) = 0.121$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
2110 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4–H4···N	0.82	2.17	2.964 (4)	164
$C1-H1\cdots O4^i$	0.98	2.57	3.533 (4)	167
$C11-H11\cdots O1^{ii}$	0.98	2.50	3.403 (4)	154

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{5}{2}, -z$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 and SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2390).

References

- Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.
 Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Castaneda-Acosta, J., Fisher, N. H. & Varga, D. (1993). J. Nat. Prod. 56, 90–98. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Der-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-
- Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). *Bioorg. Med. Chem. Lett.* **14**, 83–91.
- El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). *Fitoterapia*, **75**, 573–576.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.
- Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2011). E67, o2226-o2227 [doi:10.1107/S1600536811030467]

9-Hydroxy-4,8-dimethyl-12-(pyrrolidin-1-ylmethyl)-3,14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one

M. Moumou, A. Benharref, D. Avignant, A. Oudahmane, M. Akssira and M. Berraho

Comment

The natural sesquiterpene lactone 9 α -hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of *Anvillea radiata* (El Hassany *et al.*, 2004) and of *Anvillea garcini* (Abdel Sattar *et al.*, 1996). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Castaneda-Acosta *et al.*, 1993; Neukirch *et al.*, 2003; Der-Ren *et al.*, 2006; Neelakantan *et al.*, 2009), with the aim to prepare products with a high added value that can be used in the pharmacological industry. In the same context, we have treated 9 α -hydroxyparthenolide with one equivalent of pyrrolidine and obtained 9-hydroxy-4,8-dimethyl-12-pyrrolidin-1-ylmethyl-3, 14-dioxatricyclo[9.3.0.0^{2,4}] tetradec -7-en-13-one with a good yield of 84%. The structure of this new derivative of 9 α -hydroxypartenolide was determined by its single-crystal X-ray structure. The molecule contains two fused rings which exhibit different conformations with a pyrrolidine ring as a substituent to the lactone ring. The molecular structure of the title compound, Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters QT = 0.291 (4) Å and $\varphi 2 = 78.1$ (7)°. The ten-membered ring displays an approximate chair-chair conformation, while the pyrrolidine ring has a twisted conformation with QT = 0.377 (4) Å, $\varphi 2 = 15.0$ (8)°. In the crystal structure, molecules are connected through C—H···O hydrogen bonds, forming chains running along the *b* axis. (Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.

Experimental

A mixture of 9α -hydoxypartenolide (300 mg, 1.13 mmol) and one equivalent of pyrrolidine in EtOH (20 ml) was stirred for one night at room temperature. The next day the reaction was stopped by adding 10 ml of water and extracted three times with ethyl acetate (3 × 20 ml). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to give 315 mg (0.94 mmol, 84%) of 9-hydroxy-4,8-dimethyl-12-pyrrolidin- 1-ylmethyl-3,14dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one. The title compound was recrystallized in ethyl acetate.

Refinement

Reflections (1 0 2), (1 0 1), (1 1 0), (0 1 3), (0 1 1), (0 1 2) and (1 1 2) were obstructed by the beam stop and were omitted from the refinement. All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) and O–H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}$ (methylene, methine) or $U_{iso}(H) = 1.5U_{eq}$ (methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1554 Friedel pairs were merged and any references to the Flack parameter were removed. The choice of enantiomer is assigned arbitrarily.

Figures

Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. : Packing view showing the C–H···O and O–H···N hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

9-Hydroxy-4,8-dimethyl-12-(pyrrolidin-1-ylmethyl)-3,14- dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one

Crystal data	
C ₁₉ H ₂₉ NO ₄	F(000) = 728
$M_r = 335.43$	$D_{\rm x} = 1.236 {\rm ~Mg~m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 7656 reflections
<i>a</i> = 8.1389 (6) Å	$\theta = 3.7 - 26.4^{\circ}$
b = 10.1788 (7) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 21.7669 (15) Å	T = 298 K
$V = 1803.3 (2) \text{ Å}^3$	PRISM, colourless
Z = 4	$0.30 \times 0.27 \times 0.18 \text{ mm}$

Data collection

. .

Bruker APEXII CCD area-detector diffractometer	2110 independent reflections
Radiation source: fine-focus sealed tube	1220 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.053$
Detector resolution: 8.3333 pixels mm ⁻¹	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 4.0^{\circ}$
ϕ and ω scans	$h = -10 \rightarrow 9$
Absorption correction: multi-scan	$k = -10 \rightarrow 12$

(SADABS; Bruker, 2008)	
$T_{\min} = 0.634, \ T_{\max} = 0.746$	$l = -16 \rightarrow 27$
7656 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.121$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0601P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{max} < 0.001$
2110 reflections	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
222 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.017 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2577 (4)	1.0264 (3)	0.09346 (16)	0.0496 (9)
H1	0.2982	1.1080	0.0749	0.059*
C3	0.1673 (5)	1.0469 (4)	0.15028 (16)	0.0548 (10)
C4	0.1500 (5)	1.1871 (4)	0.16990 (18)	0.0673 (11)
H4A	0.2481	1.2346	0.1578	0.081*
H4B	0.1430	1.1901	0.2144	0.081*
C5	-0.0026 (5)	1.2584 (4)	0.14249 (19)	0.0694 (12)
H5A	-0.0984	1.2386	0.1674	0.083*
H5B	0.0151	1.3526	0.1438	0.083*
C6	-0.0347 (5)	1.2170 (3)	0.07708 (16)	0.0508 (10)
Н6	0.0391	1.2462	0.0475	0.061*
C7	-0.1572 (4)	1.1435 (3)	0.05791 (15)	0.0427 (8)
C8	-0.1582 (4)	1.0771 (3)	-0.00454 (15)	0.0462 (9)
H8	-0.2722	1.0556	-0.0150	0.055*
C9	-0.0599 (4)	0.9476 (3)	-0.00085 (16)	0.0441 (8)
H9A	-0.0842	0.9051	0.0380	0.053*
H9B	-0.0968	0.8897	-0.0334	0.053*
C10	0.1272 (4)	0.9652 (3)	-0.00631 (15)	0.0428 (8)

Eractional	atomic	coordinatas	and	isotronic	or	aquinalant	isotropic	dianla	comont	naramatars	1 84	21
raciionai	utomic	coorainaies	unu	isonopic	<i>UI</i>	equivalent	isonopic	uispiu	cemeni	purumeters	(л	/

H10	0.1484	1.0592	-0.0118	0.051*
C11	0.2305 (4)	0.9192 (3)	0.04834 (16)	0.0469 (9)
H11	0.1811	0.8422	0.0680	0.056*
C12	0.3823 (5)	0.8774 (3)	-0.0393 (2)	0.0580 (10)
C13	0.2083 (4)	0.8935 (3)	-0.05999 (17)	0.0519 (10)
H13	0.1584	0.8063	-0.0639	0.062*
C14	0.1989 (5)	0.9619 (4)	-0.12159 (17)	0.0604 (11)
H14A	0.2482	1.0483	-0.1177	0.072*
H14B	0.2635	0.9126	-0.1511	0.072*
C15	-0.0436 (6)	0.8528 (4)	-0.1647 (2)	0.0802 (14)
H15A	-0.0827	0.8038	-0.1293	0.096*
H15B	0.0333	0.7987	-0.1874	0.096*
C16	-0.1830 (7)	0.8946 (5)	-0.2044 (3)	0.1017 (17)
H16A	-0.2811	0.9096	-0.1801	0.122*
H16B	-0.2067	0.8285	-0.2353	0.122*
C17	-0.1246 (6)	1.0221 (5)	-0.23440 (19)	0.0808 (14)
H17A	-0.1037	1.0089	-0.2778	0.097*
H17B	-0.2065	1.0907	-0.2298	0.097*
C18	0.0303 (6)	1.0581 (4)	-0.20152 (16)	0.0690 (12)
H18A	0.1253	1.0398	-0.2270	0.083*
H18B	0.0303	1.1507	-0.1910	0.083*
C19	0.0421 (5)	0.9509 (4)	0.17490 (18)	0.0735 (13)
H19A	0.0628	0.8653	0.1581	0.110*
H19B	-0.0662	0.9791	0.1634	0.110*
H19C	0.0499	0.9474	0.2189	0.110*
C20	-0.3045 (5)	1.1034 (4)	0.09593 (18)	0.0682 (12)
H20A	-0.2922	1.1361	0.1370	0.102*
H20B	-0.3124	1.0093	0.0969	0.102*
H20C	-0.4025	1.1393	0.0780	0.102*
Ν	0.0336 (4)	0.9768 (3)	-0.14550 (13)	0.0539 (8)
01	0.5035 (4)	0.8578 (3)	-0.06984 (15)	0.0824 (9)
O2	0.3922 (3)	0.8876 (2)	0.02235 (13)	0.0600 (7)
O3	0.3332 (3)	0.9963 (3)	0.15201 (12)	0.0662 (8)
O4	-0.0948 (3)	1.1599 (2)	-0.05115 (11)	0.0544 (7)
H4	-0.0741	1.1161	-0.0818	0.060 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.040 (2)	0.055 (2)	0.054 (2)	-0.0002 (18)	-0.0123 (19)	0.0075 (18)
C3	0.046 (2)	0.071 (3)	0.047 (2)	0.004 (2)	-0.0050 (19)	0.011 (2)
C4	0.059 (3)	0.088 (3)	0.055 (2)	0.000 (2)	-0.009 (2)	-0.010 (2)
C5	0.072 (3)	0.070 (3)	0.066 (3)	0.007 (2)	-0.003 (3)	-0.012 (2)
C6	0.050 (2)	0.049 (2)	0.053 (2)	0.0035 (18)	-0.001 (2)	-0.0002 (17)
C7	0.0356 (19)	0.0471 (19)	0.0454 (19)	0.0053 (16)	0.0035 (18)	0.0030 (17)
C8	0.038 (2)	0.054 (2)	0.046 (2)	-0.0014 (15)	-0.0027 (18)	0.0111 (18)
C9	0.043 (2)	0.0413 (18)	0.0484 (19)	-0.0034 (15)	-0.0035 (17)	0.0050 (17)
C10	0.041 (2)	0.0349 (17)	0.052 (2)	0.0005 (15)	-0.0019 (18)	0.0044 (16)

C11	0.038 (2)	0.0424 (19)	0.060 (2)	0.0016 (15)	-0.0031 (19)	0.0104 (17)
C12	0.055 (3)	0.041 (2)	0.078 (3)	0.0097 (19)	0.009 (3)	-0.0028 (19)
C13	0.051 (2)	0.0458 (19)	0.059 (2)	-0.0019 (17)	0.008 (2)	-0.0038 (18)
C14	0.062 (3)	0.064 (2)	0.056 (2)	0.004 (2)	0.012 (2)	-0.007 (2)
C15	0.106 (4)	0.065 (3)	0.069 (3)	-0.026 (3)	-0.011 (3)	-0.011 (2)
C16	0.111 (4)	0.109 (4)	0.085 (3)	-0.026 (4)	-0.022 (3)	-0.012 (3)
C17	0.091 (4)	0.093 (3)	0.059 (2)	0.003 (3)	-0.012 (3)	-0.012 (2)
C18	0.083 (3)	0.079 (3)	0.045 (2)	-0.009 (3)	0.006 (2)	0.004 (2)
C19	0.067 (3)	0.089 (3)	0.065 (2)	-0.011 (3)	0.002 (2)	0.026 (2)
C20	0.046 (2)	0.095 (3)	0.064 (2)	-0.002 (2)	0.008 (2)	0.001 (2)
Ν	0.062 (2)	0.0553 (18)	0.0444 (16)	-0.0090 (16)	0.0040 (16)	-0.0051 (15)
01	0.068 (2)	0.0735 (19)	0.106 (2)	0.0188 (16)	0.0221 (19)	-0.0043 (18)
O2	0.0461 (16)	0.0548 (15)	0.0791 (19)	0.0125 (13)	-0.0057 (14)	0.0001 (13)
O3	0.0478 (16)	0.0875 (19)	0.0634 (16)	0.0074 (14)	-0.0176 (14)	0.0097 (14)
O4	0.0635 (17)	0.0531 (14)	0.0466 (14)	0.0046 (14)	0.0035 (14)	0.0102 (13)

Geometric parameters (Å, °)

C1—O3	1.448 (4)	C12—O1	1.206 (4)
C1—C3	1.454 (5)	C12—O2	1.349 (5)
C1—C11	1.485 (5)	C12—C13	1.495 (5)
C1—H1	0.9800	C13—C14	1.513 (5)
C3—O3	1.446 (4)	С13—Н13	0.9800
C3—C4	1.496 (5)	C14—N	1.450 (4)
C3—C19	1.510 (5)	C14—H14A	0.9700
C4—C5	1.558 (5)	C14—H14B	0.9700
C4—H4A	0.9700	C15—N	1.470 (5)
C4—H4B	0.9700	C15—C16	1.489 (6)
C5—C6	1.508 (5)	C15—H15A	0.9700
С5—Н5А	0.9700	C15—H15B	0.9700
С5—Н5В	0.9700	C16—C17	1.529 (6)
C6—C7	1.315 (4)	C16—H16A	0.9700
С6—Н6	0.9300	C16—H16B	0.9700
C7—C20	1.513 (5)	C17—C18	1.495 (6)
С7—С8	1.518 (5)	С17—Н17А	0.9700
C8—O4	1.417 (4)	С17—Н17В	0.9700
C8—C9	1.544 (5)	C18—N	1.474 (5)
С8—Н8	0.9800	C18—H18A	0.9700
C9—C10	1.538 (4)	C18—H18B	0.9700
С9—Н9А	0.9700	C19—H19A	0.9600
С9—Н9В	0.9700	С19—Н19В	0.9600
C10—C13	1.528 (5)	С19—Н19С	0.9600
C10-C11	1.530 (4)	C20—H20A	0.9600
C10—H10	0.9800	С20—Н20В	0.9600
C11—O2	1.468 (4)	С20—Н20С	0.9600
C11—H11	0.9800	O4—H4	0.8200
O3—C1—C3	59.8 (2)	O2—C12—C13	110.3 (3)
O3—C1—C11	119.3 (3)	C12-C13-C14	111.4 (3)
C3—C1—C11	126.3 (3)	C12—C13—C10	103.4 (3)

O3—C1—H1	113.6	C14—C13—C10	115.8 (3)
C3—C1—H1	113.6	C12—C13—H13	108.6
C11—C1—H1	113.6	C14—C13—H13	108.6
O3—C3—C1	59.9 (2)	С10—С13—Н13	108.6
O3—C3—C4	114.9 (3)	N-C14-C13	114.4 (3)
C1—C3—C4	115.3 (3)	N—C14—H14A	108.7
O3—C3—C19	113.0 (3)	C13—C14—H14A	108.7
C1—C3—C19	123.4 (4)	N-C14-H14B	108.7
C4—C3—C19	116.9 (4)	C13—C14—H14B	108.7
C3—C4—C5	114.2 (3)	H14A—C14—H14B	107.6
C3—C4—H4A	108.7	N-C15-C16	104.2 (4)
С5—С4—Н4А	108.7	N—C15—H15A	110.9
C3—C4—H4B	108.7	C16—C15—H15A	110.9
C5—C4—H4B	108.7	N-C15-H15B	110.9
H4A—C4—H4B	107.6	C16—C15—H15B	110.9
C6—C5—C4	111.7 (3)	H15A—C15—H15B	108.9
С6—С5—Н5А	109.3	C15—C16—C17	104.7 (4)
С4—С5—Н5А	109.3	C15—C16—H16A	110.8
C6—C5—H5B	109.3	С17—С16—Н16А	110.8
С4—С5—Н5В	109.3	C15—C16—H16B	110.8
H5A—C5—H5B	107.9	C17—C16—H16B	110.8
C7—C6—C5	126.2 (4)	H16A—C16—H16B	108.9
С7—С6—Н6	116.9	C18—C17—C16	105.4 (4)
С5—С6—Н6	116.9	C18—C17—H17A	110.7
C6—C7—C20	125.5 (3)	С16—С17—Н17А	110.7
C6—C7—C8	122.8 (3)	C18—C17—H17B	110.7
C20—C7—C8	111.4 (3)	С16—С17—Н17В	110.7
O4—C8—C7	112.0 (3)	H17A—C17—H17B	108.8
O4—C8—C9	110.9 (3)	N	105.9 (3)
С7—С8—С9	109.3 (3)	N—C18—H18A	110.6
O4—C8—H8	108.2	C17—C18—H18A	110.6
С7—С8—Н8	108.2	N	110.6
С9—С8—Н8	108.2	C17—C18—H18B	110.6
C10—C9—C8	114.2 (3)	H18A—C18—H18B	108.7
С10—С9—Н9А	108.7	С3—С19—Н19А	109.5
С8—С9—Н9А	108.7	С3—С19—Н19В	109.5
С10—С9—Н9В	108.7	H19A—C19—H19B	109.5
С8—С9—Н9В	108.7	С3—С19—Н19С	109.5
Н9А—С9—Н9В	107.6	H19A—C19—H19C	109.5
C13—C10—C11	102.2 (3)	H19B—C19—H19C	109.5
C13—C10—C9	115.6 (3)	C7—C20—H20A	109.5
C11—C10—C9	116.6 (3)	С7—С20—Н20В	109.5
C13-C10-H10	107.3	H20A—C20—H20B	109.5
C11-C10-H10	107.3	С7—С20—Н20С	109.5
С9—С10—Н10	107.3	H20A—C20—H20C	109.5
O2—C11—C1	106.4 (3)	H20B—C20—H20C	109.5
O2—C11—C10	105.1 (3)	C14—N—C15	114.1 (3)
C1—C11—C10	111.8 (3)	C14—N—C18	111.9 (3)
O2-C11-H11	111.1	C15—N—C18	103.8 (3)

C1—C11—H11 C10—C11—H11 O1—C12—O2	111.1 111.1 120.8 (4)		C12—O2—C11 C3—O3—C1 C8—O4—H4		110.3 (3) 60.3 (2) 109.5
O1—C12—C13	128.9 (4)				
Hydrogen-bond geometry (2	Å, °)				
D—H··· A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O4—H4…N		0.82	2.17	2.964 (4)	164
C1—H1…O4 ⁱ		0.98	2.57	3.533 (4)	167
C11—H11…O1 ⁱⁱ		0.98	2.50	3.403 (4)	154

Symmetry codes: (i) x+1/2, -y+5/2, -z; (ii) x-1/2, -y+3/2, -z.

